

Abstract—This article presents a novel mechanism to perform

packet content inspection by longest prefix matching (LPM)
technology. It is done by transforming the automaton-based state
table lookup problem into the famous LPM table lookup problem.
Two key features, symbol-wise prefix and magic state are observed
on the state table to make it possible to utilize IP lookup techniques
for string matching. The proposed mechanism is verified to be
effective through Lulea algorithm. Also, the practicability is
evaluated by employing realistic attack signatures and traffic
traces. The experimental results indicate that a state table
constructed from the Snort 2.4 patterns can be converted into a
prefix table that requires only 2.5% of the memory utilized in the
original state table. Compared with the state-of-the-art researches,
the proposed scheme has more than 3 times of efficiency, achieving
a better balance between required memory size and throughput
rate.

Index Terms—Packet Content Inspection, Longest prefix
matching, String matching.

I. INTRODUCTION
Deep packet content inspection is one of the most significant

challenges and important issues to provide security service in
high speed network environment. To achieve high-speed packet
content inspection, many string matching algorithms have been
proposed. For example, the Boyer-Moore algorithm has the best
search performance among current well-known single pattern
matching algorithms [1]. When it comes to multiple-pattern
matching, Aho-Corasick (AC) algorithm and Wu-Manber
(WM) algorithm, which were introduced in 1975 and 1992,
respectively, are the two most well-known algorithms [2][3].
AC is an automaton-based algorithm and WM exploits the
feature of bad character heuristic.

In network appliances like switches, the most common
application of string matching is the layer-2 address resolution.
Since the pattern lengths in the layer-2 address lookup are the
same (48/64 bits), binary searching, hashing, and CAM/TCAM
are the common techniques to apply [4]. Although various
researches focus on performing a single pattern search in
parallel, they are not suitable for modern network environments

This work was supported by MOE Program for Promoting Academic

Excellent of Universities (II) under the grant number
NSC-94-2752-E-007-002-PAE, and NSC project under the grant number
NSC-95-2221-E007-054.

[5][6]. This is because the deep packet inspection requires
multiple-pattern matching with variable length patterns. For
instance, the rules in Snort are of variable lengths [7].

For the demand of performing layer-7 packet content
inspection on network appliances, various studies have been
proposed and implemented—search filter [8][9], reconfigurable
silicon hardware [10], and TCAM-based method [11]. In this
paper, a novel scheme, “String Matching as Longest Prefix
Matching” (SM as LPM), is presented for applying the existing
layer-3 LPM techniques of IP address lookup to the layer-7
packet content inspection. This paper also explores a new
development aspect to LPM, which is regarded as a mature
research field today. The LPM algorithm is used to find the
longest prefix-matched entry in router’s forwarding table. Since
the speed of IP lookup is crucial to routers’ performance,
numerous LPM algorithms have been proposed [12]-[14]. In
this paper, we show that the layer-3 IP lookup techniques can be
applied to the layer-7 content inspection by employing the
analogy between IP lookup and automaton-based
string-matching algorithms.

The rest of this paper is organized as follows. In section II, we
present earlier researches on automaton-based string-matching
algorithms and related studies. In section III, the basic concepts
of symbol-wise prefix and magic state are introduced. Also, the
well-known LPM algorithm, Lulea, is applied here as an
example to verify the correctness of the proposed scheme. In
section IV, the effectiveness of the proposed mechanism is
analyzed and evaluated. Finally, some conclusions and future
work are given in section V.

II. RELATED WORK
Before introducing the idea of transforming the string

matching problem to the LPM problem, let us first review an
important model in computer science: finite state automaton,
FSA (i.e., finite state machine, FSM). FSA is composed of a
finite number of states. Each state can transit to zero or more
states depending on the input information. Finite state
automaton can be classified into two categories: deterministic
(DFA) and nondeterministic (NFA). Generally, DFA has better
performance than NFA but it requires more states (memory
space). It is worth mentioning that the Donnelly-proposed “IP
Route Lookups as String Matching” uses finite state automata to

Nen-Fu Huang, Yen-Ming Chu
Department of Computer Science and

 Institute of Communication Engineering,
National Tsing Hua University,

HsinChu, Taiwan

Yen-Min Wu,Chia-Wen Ho
Department of Computer Science,

National Tsing Hua University,
HsinChu, Taiwan

Performing Packet Content Inspection by Longest
Prefix Matching Technology

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

11

solve the problem of LPM [15].

A. Automaton-based Algorithm
Although the WM algorithm is superior to all other multiple-

pattern matching algorithms in the average case, it only shifts
one byte at a time in the worst case. Malicious elements (like
hackers) can exploit this feature to attack systems. A research
[16] employing a synthetic input string shows that the
performance of such algorithms are considerably suffered from
algorithm attacks, which can be even declined to that of single
pattern string matching. Therefore, general network appliances,
especially those related to network security, usually avoid
adopting WM algorithm since the device may become a victim
of denial of service attack.

In order to avoid these problems, the well-known AC
algorithm becomes a popular choice. It constructs an FSA based
on the given keyword patterns and performs string matching by
state transition. In the worst case, it still has a deterministic
processing rate. In AC-based automata, each state requires 256
next state pointers, a pattern pointer, and a corresponding
pattern ID (PID). Besides, the NFA structure needs to maintain
another failure pointer to record the failure path. To reduce the
huge amount of memory space requirement, Norton [17] used
special compression methods to decrease the memory space
when implementing Snort rules on AC; this is the most popular
AC implementation nowadays. However, it also lowers the
search performance. Besides, Nishimura proposed a speed-up
method for the AC algorithm by rearranging the states [18].

N. Tuck, et al modified the NFA-based AC algorithm and
used bitmaps that correspond to symbols to record the state
transition of the non-failure path [16]. In this way, every node in
the finite automaton only uses a pointer pointing to the next
state list instead of allocating all the pointers to the next state.

Recently, J.V.Lunteren, et al [19] presented a BFSM-based
pattern-matching (BFPM) scheme based on a BaRT routing
table search algorithm. BFSM is based on state transition rules
that include conditions for the current state and input symbols,
which are assigned priorities. However, this scheme is not
suitable for software implementation due to its multiple FSM
data structure.

III. STRING MATCHING AS LONGEST PREFIX MATCHING
The proposed model for performing string matching by

longest prefix matching consists of two stages. The first stage
performs state transition by LPM-based table lookup. The
second stage searches the pattern ID if the output of the first
stage is an accepting state.

Fig. 1 explains the execution of the first stage, state table
lookup stage. Since the next state is generated from the current
state ψ and the input symbol tr, Index = {tr:ψ}. Because all
symbols used in this paper are ASCII codes, the bit size u of a
symbol is 8. The bit size v of a state is decided by the number of
whole characters of all patterns and is generally equals to 16 or
32. For example, the total amount of states constructed from
Snort 2.4 patterns is 21595 and hence the bit size v of a state is

16. The bit size w of the index is then given by w = u + v = 8 + 16
= 24 bits. The index is generated by a conjunction of the input
symbol that enters the FSM and the current state. It is used to
lookup the corresponding next state in state table. The major job
of the second stage, pattern search, is to determine whether the
output state of state table lookup is an accepting state or not. If it
is, then find the matched pattern ID.

We focus on state table lookup here, as it is the key operation
to the automaton-based algorithm. In fact, the fundamentality of
all kinds of FSA operations is based on state transitions. The
state table in table lookup stage can be represented as a state
transition matrix depicted in Fig. 2. The variables u and v
represent the bit sizes of the symbol and state, respectively. The
element e(x,y) represents the appropriate next state when the
current state y receives the input symbol x, and all the state
transitions in the FSM can be recorded in the matrix. In the
remaining sections of this paper, the FSA will be represented in
the form of matrix M. This study concentrates on problems
involving M for the DFA. We observed two interesting key
features: symbol-wise prefix and magic state, which are
described as follows.

A. Symbol-wise Prefix
Among the IP lookup algorithms, an algorithm named

DIR-24-8-BASIC was proposed by P. Gupta [13]. In simple
words, the algorithm segments the 32-bit IP address a.b.c.d into
two parts: the 24-bit part (a.b.c) and the 8-bit part (d). By a
straightforward method, the first 24 bits of the IP address is
employed to function as the index for 224 entries. The entry
content of a prefix whose length equals to or less than 24 bits is
the next hop, and for prefixes with length greater than 24 bits,
the next hop will be found in the level-2 table whose index
comprises the last 8 bits of the IP address. The concept of this IP
lookup algorithm can be adopted straightforwardly to use 24
bits as the index in our proposal. This makes both the proposed
algorithm and that in [13] have almost the same table structure
and operations. The original 224 elements in the automaton
matrix can be rearranged as shown in Fig. 3.

Conventionally, the next state is decided by the current state
and the input symbol in the FSM. In the scheme shown in Fig. 1,
we straightforwardly assume the combination of the current
state and input symbol to be the index and determine the next
state using direct-lookup mechanism. The next state and Index
are seen as the next hop and IP address (most significant 24-bit
portion) in the LPM, respectively.

Now, let us have some critical definitions: Let Index(x,y) =
{w23, w22,…, w16, w15,…, w1, w0}, where w23 represents the 24th
bit, which is the most significant bit (MSB), and w0 represents

1011100101011010111111111111111111111111

…
…

…
…

…
…

0000000000000001011010101111001100010010

………

0111010100011010000000000000000000000000

Next StateIndex

1011100101011010111111111111111111111111

…
…

…
…

…
…

0000000000000001011010101111001100010010

………

0111010100011010000000000000000000000000

Next StateIndex

Symbol Current
State

u bits v bits v bits

State Table

Fig. 1. Illustration of state table lookup.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

12

the first bit which is the least significant bit (LSB). The Index(x,y)
is generated by the combination of input string symbol x (8 bits)
and current state y (16 bits). There are two ways to design the
data structure of the state table: state-wise prefix or symbol-wise
prefix. For the state-wise design, the current state and input
symbol are placed in the MSB-side and LSB-side, respectively,
and we have Index(x,y) = {v15,…, v1, v0, u7, u6,…, u0}. This design
is suitable for the case when M is an NFA.

Nevertheless, it is interesting to see that when M is a DFA, for
each symbol x, most of e(x, y) have the same value (next state) for
different current state y. For example, Fig. 4 shows the partial
DFA table for Snort 2.4 constructed by the AC algorithm. We
can see that most of the next states for input symbols 0x47, and
0x4C are 269, and 527, respectively. This generates the idea of
symbol-wise prefix where the input symbol and current state are
placed on the MSB-side and LSB-side, respectively, so that
Index(x,y) = { u7, u6,…, u0, v15,…, v1, v0}.

Based on this symbol-wise prefix data structure, it is
observed that for the next state array with 224 entries, many
continuous entries have the same next state number. In other
words, it is very common to observe the relation e(x,y–α)=…=e(x,y)
= e(x,y+β), where 0 ≤ α, β ≤ 2v-1. This provides the opportunity to
aggregate many consecutive entries into one entry with shorter
prefix length. For the sake of simplicity, consider the example
of u = 2, v = 3, and for an input symbol x, e(x, y–1) = e(x, y). In this
case, the state table is original of 32 entries (2u+v= 25=32).
Assume that x = 3(11), y = 5(101). Then we have e(11, 100) = e(11,

101). In other words, the 28th (11100) entry and 29th (11101) entry
of the state table can be merged into one entry with prefix
1110*. The star symbol “*” represents “don’t care” similar to its
meaning in routing prefixes. Consequently, the prefix lengths of
Index(11, 100) and Index(11, 101) are reduced from 5 bits to 4 bits.
Based on this concept, if there are four consecutive entries of
state table with the same entry value (the same next state), then
these four entries can be merged into one entry with prefix
“…**”, and so on. This symbol-wise prefix is the primary key
that enables the state table lookup to be processed by using the
LPM lookup algorithm.

Fortunately, as we have figured out in Fig. 4, for each input
symbol, most of its next states are with the same value, and this
provides a good chance to merge most of the entries of state
table so that the total number of entries can be dramatically
reduced. For example, when u = 8 and v = 16, for the matrix M
constructed by the Snort 2.4 patterns, the number of entries is
dramatically reduced to 590,453 from 16-million (28+16) entries
when the symbol-wise prefix approach is employed, requiring
only 3.5% of the original number of entries. Fig. 5 shows the
distribution of the symbol-wise prefix, and the shortest prefix
length can be only 10 bits.

B. Magic State
In the previous subsection, we proposed the symbol-wise

prefix that establishes a correspondence between the DFA state
table and routing table. This successfully solves the DFA
suitable problem mentioned in [16]. As we have pointed out
before, the DFA constructed by the AC algorithm provides an
interesting feature that for each input symbol x, most of the
current states have the same next state value. We define this
next state as the “magic state” of x (denoted as ms(x)). Consider
the case shown in Fig. 4, the magic states for symbols 0x47 to
0x4C are 269, 139, 151, 803, 1061, and 527, respectively.

The magic state feature can be further applied to the
symbol-wise prefix to reduce the prefix length. The
construction procedure for the symbol-wise prefix can now be
slightly modified as: In matrix M, if e(x,y) = ms(x), the
corresponding Index(x,y) will be transformed to Index'(x,y) = {
w'23, w'22,…, w'16, w'15,…, w'1, w'0}= {w23, w22,…, w16, *, *,…, *,
*}. Thus, if e(x, y) is a magic state, the values from w'15 to w'0 of
the corresponding Index'(x,y) will be “don’t care”. More precisely,
all the entries with the next state equals to the magic state ms(x)
can be merged into one symbol-wise prefix with a length of 8.
To prove the effectiveness of the magic state concept, an
experiment with the signatures of Snort 2.4 is conducted. Fig. 6
shows the correctness of our proposition. There are 256
symbol-wise prefixes (corresponding to the magic states for
each symbol) that are 8-bit long, and the total number of prefix
entries decreases to 273,212. In other words, with the magic
state, the number of symbol-wise prefixes is decreased by
approximately 50% and the total number of the lookup table
entries is dramatically reduced to only 1.5% (273k/16-million).

Besides the fact that the magic state can decrease the number
of symbol-wise prefixes, it has a much more important meaning
for performing string matching by longest prefix matching.
Compare the prefix distributions shown in Fig. 5 and Fig. 6, we
can find that the magic state feature not only decreases the
number of prefixes considerably but also concentrates the prefix
distributions. In other words, after the magic state feature is
applied, the distribution of the symbol-wise prefix will appear
only in five lengths: 8, 21, 22, 23, and 24. A distribution like this
will make the non-trie LPM algorithms, like hash-based and





























≡

−−−−−−

−−−

+

+−

−

−

−−

)12,12()12,22()12,1()12,0(

)22,12()22,0(

)1,(

),1(),(),1(

)1,(

)1,12()1,0(

)0,12()0,22()0,1()0,0(

vuvuvv

vuv

u

uu

eeee
ee

e
eee

e
ee
eeee

M

yx

yxyxyx

yx

Fig. 2. Automaton Matrix.

24 bits
Index

Directly Spread

For

Exactly Matching

224 entries
Fig. 3. Direct-lookup mechanism.

Input Symbol(ASCII)
0x47 0x48 0x49 0x4A 0x4B 0x4C

16 269 1037 1016 803 984 527
17 269 139 151 803 1061 527
18 12551 14000 12435 19727 1061 13877
19 3063 12373 4190 803 1061 14843
20 269 139 151 803 1061 527
21 269 139 19 803 2558 527
22 269 3464 151 803 1061 527
23 269 4145 4190 803 1061 257
24 269 139 15288 803 1061 527

C
ur

re
nt

 S
ta

te

25 269 139 151 803 1061 527
Fig. 4. Partial DFA table of Snort 2.4.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

13

TCAM-based algorithms, have excellent performance [20]. For
example, consider the approach proposed by Lim [21]; it
divides a prefix into groups based on the prefix length and sends
each group of prefixes to the corresponding engine. Since the
prefixes are grouped based on a maximum of five lengths, we
need only five engines to process the lookup operation.

C. Demonstrations
From the experiments in Fig. 5 and Fig. 6, we can see that the

symbol-wise prefix is similar to the IP routing prefix and can
effectively decrease the index requirement. We have
straightforwardly used direct-lookup mechanism for string
matching, and next, we would like to further prove that dealing
with the symbol-wise prefix is the same as dealing with the IP
prefix through applying a routing lookup algorithm.

M. Degermark presented a data structure for forwarding table
named Lulea algorithm designed for fast routing lookups [12].
By an ingenious design, it enables the IP routing table to be
compressed for storing in the cache (500~600 KB for 40,000
entries) of a processor through three elegant structures: code
word array, base index array, and maptable. The algorithm got
conceit and spawned an industry of follow-up articles [22].
Therefore, it is employed as the longest prefix matching
algorithm without changing its algorithm and data structure.

In Lulea [12], the routing prefix is segmented into three
levels—one 16-bit level and two 8-bit levels. The data structure
is mainly placed in level-1. Reviewing the discussion on the
symbol-wise prefix, concerning Snort 2.4, there were 256
symbols and no more than 65,536 total states and the longest
prefix was 24-bit long. If we segment the symbol-wise prefix
into two levels of 8 bits and 16 bits, we can find its
advantageous like the case employing Huang’s NHA [14]. This
means that the second level of the symbol-wise prefix is exactly
suitable for the design of Lulea’s level-1. Therefore, we have to
maintain 256 pairs of code word and base index arrays but just
one maptable data structure.

When processing the next state lookup, we use the first 8 bits
(w23~w16) of Index to decide which code word array and base
index array are needed for the lookup. We then execute level-1
of the Lulea algorithm with the last 16 bits (w15~w0) to obtain
the next state value. Considering Fig. 7 as an illustration, the
first 8 bits representing the symbol that decides which code
word array and base index array are used; these arrays are
represented by hollow arrows in the figure. Next, we perform a
lookup by employing the Lulea algorithm; this is represented in
the dotted box on the right-hand side in the figure. By using the
symbol-wise prefix, the string-matching problem can be
successfully handled by the LPM algorithm.

IV. EVALUATION AND ANALYSIS
To evaluate the effectiveness of the proposed analogical

relationship as well as the transformation procedure between
string matching and LPM, the Snort 2.4 is taken as the patterns
and the Defcon9 traces [23] are used as the input strings.

Table I is the evaluation result for four implementations from
the viewpoint of memory size Em (MB), software throughput
rate Et (Mbps), and overall efficiency E. The efficiency value is
defined as E = Et/Em, which represents throughput rate
generated by each unit of memory. AC-DFA and AC-NFA
represent the DFA and NFA in the traditional AC algorithm,
respectively. AC-Bitmap is the algorithm for the NFA with
bitmap that was proposed in [16]; while AC-Lulea refers to the
implementation of the LPM algorithm [12] previous introduced.
In Snort 2.4, the number of signatures (keyword patterns) is
around 2390 with a total of 35K characters. Through Norton’s
AC implementation, the content is transferred to a DFA of
21,595 states and among them, 8,477 states are accepting states.
The required memory space is approximately 56 MB according
to the studies that have analyzed the AC algorithm [16][17]. In
addition, by a comparison with several results of traces in
various networks, we can find that the number of state
transitions in a DFA is 30% less than that in an NFA.

When Lulea algorithm is applied, the symbol-wise prefix is
taken into consideration. Since the original 21595 × 256 indexes
are reduced to 590,453 symbol-wise prefixes (also shown in Fig.
5), the required memory space is decreased considerably. The
memory space for Lulea algorithm is reduced to less than 1.4
MB. Lulea algorithm is also implemented on a Windows XP
platform to verify the correctness of the proposed mechanism.
The software throughput for this implementation is also shown
in TABLE I. Although the throughput for Lulea algorithm is not
as good as traditional AC implementations because the
proposed model involves the processing of the data structure
(like popcount), the performance is still three times better than
that of the compressed NFA with bitmap in [16]. Comparatively
speaking, the AC-Lulea algorithm is much better than the
AC-Bitmap algorithm.

Based on TABLE I, we observed that there is a trade-off
between the memory size requirement and the throughput rate.
To make the comparison more practical and realistic, we take
both throughput and memory usage into consideration, that is,
overall efficiency (E). The higher E value represents better
balance between performance and memory usage. Among all
implementations listed in TABLE I, AC-Lulea has the best
efficiency, about 7 times of that of AC-NFA, 3 times of that of
AC-Bitmap, and more than 2 times of that of AC-DFA. The
statistics indicate that through consumption of each memory
unit, AC-Lulea could achieve the highest throughput rate. Since

256

0 0 0 0 0 0 0 0 0 0 0 0

161

754

5411

266630

1

10

100

1000

10000

100000

1000000

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Prefix Length

N
um

be
r o

f P
re

fix
es

Fig. 6. Length distribution of symbol-wise prefix with 256 magic states.

0

50 54

272 328 416 448
839

1597
2801

4998
9876

19543
40011

83512

425708

1

10

100

1,000

10,000

100,000

1,000,000

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Prefix Length

N
um

be
r o

f P
re

fix
es

Fig. 5. Length distribution of symbol-wise prefix in DFA.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

14

the proposed implementation requires only a tiny amount of
memory, it provides high flexibility in various environments,
especially in resource-limited network appliances.

V. CONCLUSIONS

A novel mechanism to perform string matching by longest
prefix matching (LPM) has been proposed in this paper. We
focus on converting the state table lookup problem in
automaton-based string matching algorithms to the famous IP
routing table lookup problems. Two characteristics,
symbol-wise prefix and magic state are observed to make it
possible to utilize IP LPM lookup techniques for string
matching. By applying the two key features, a state table
established from the Snort 2.4 patterns is successfully
transferred into a prefix table that requires only 2.5% of the
memory utilized in the original state table. Compared with past
NFA-based string matching researches, the proposed scheme
achieves more than 3 times of efficiency.

By demonstrating that the string matching can be performed
by LPM, it opens a window for designing cost-effective security
switches/routers based on the commodity L3 switches or routers.
As many modern L3 switches or routers employed the LPM
algorithms for IP address lookup, we now have the opportunity
to upgrade these devices to layer-7 with deep content inspection
capability based on their original hardware platforms.
Particularly, for speed consideration, it is even better if TCAM
is designed in the hardware platform as several efficient
TCAM-based LPM algorithms can be applied.

REFERENCES
[1] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”

Communications of the ACM, vol. 20, Session 10, Oct. 1977, pp. 761–772.
[2] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to

bibliographic search,” Communications of the ACM, vol. 18, issue 6, Jun.
1975, pp. 333–340.

[3] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching,”
Technical Report TR-94-17, Department of Computer Science, University
of Arizona, 1994

[4] R. Seifert, The switch book: a complete guide to LAN switching
technology, John Wiley & Sons, 2000

[5] A. N. M. E. Rafiq, M. W. El-Kharashi, and F. Gebali, “A Fast String
Search Algorithm for Deep Packet Classification,” Computer Comm., vol.
27, no. 15, pp. 1524–1538, Sept. 2004

[6] F. Gebali and A. N. M. E. Rafiq, “Processor Array Architectures for Deep
Packet Classification,” IEEE Transactions. Parallel and Distributed
Systems, vol. 17, issue. 3, pp. 241–252, March 2006.

[7] M. Roesch, “Snort: Lightweight intrusion detection for networks,”
USENIX 1999 LISA Systems Administration Conference, November 1999.
Available: http://www.snort.org/

[8] N. F. Huang, Y. M. Chu, J. L. Chen, and K. J. Huang, “A
non-Computation Intensive Pre-filter for String Pattern Matching in
Network Intrusion Detection Systems,” IEEE GLOBECOM 2006, San
Francisco, USA, November 2006.

[9] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood, “Deep
packet inspection using parallel Bloom filters,” IEEE Micro, vol. 24, no. 1,
2004, pp. 52–61.

[10] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, “Implementation of a
content-scanning module for an internet firewall,” IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM), Napa, CA,
April 9–11, 2003, pp. 31–38.

[11] F. Yu , R. H. Katz , and T. V. Lakshman, “Gigabit rate packet
pattern-matching using TCAM,” IEEE International Conference on
network protocols (ICNP’04), Oct. 5–8, 2004, pp. 174–183.

[12] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small Forwarding
Tables for Fast Routing Lookups,” ACM SIGCOMM’97, Cannes, France,
Sep. 1997, pp. 3–14.

[13] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in Hardware at
Memory Access Speeds,” IEEE INFOCOM’98, San Francisco, CA, Apr.
1998, pp. 1240–1247.

[14] N. F. Huang and S. M. Zhao, “A Novel IP Routing Lookup Scheme and
Hardware Architecture for Multi-Gigabit Switch Routers,” IEEE Journal
on Selected Areas in Communications (IEEE JSAC), vol. 17, no. 6, pp.
1093–1104, Jun. 1999.

[15] A. Donnelly and T. Deegan, “IP route lookups as string matching,” IEEE
International Conference on Local Computer Networks (LCN), 2000, pp.
589–595.

[16] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion detection,”
IEEE INFOCOM’04, Mar. 2004, pp. 333–340.

[17] M. Norton, “Optimizing Pattern Matching for Intrusion Detection,”
Sourcefire, Inc., Columbia, MD, Tech. Rep., Jul. 2004. Available:
http://www.sourcefire.com

[18] T. Nishimura, S. Fukamachi, and T. Shinohara, “Speed-up of
Aho-Corasick Pattern Matching Machines by Rearranging States,” IEEE
SPIRE’01, Laguna de San Rafael, CHILE, 2001, pp. 175–185.

[19] J. van Lunteren, "High-Performance Pattern-Matching for Intrusion
Detection," IEEE INFOCOM'06 , Barcelona, Spain, Apr, 2006.

[20] V. C. Ravikumar and R. N. Mahapatra, “TCAM Architecture for IP
Lookup Using Prefix Properties,” IEEE Micro, vol. 24, no. 2, 2004, pp.
60–69.

[21] H. Lim, J. Seo, and Y. Jung, “High Speed IP Address Lookup Architecture
Using Hashing,” IEEE Communications Letters, vol. 7, no. 10, Oct. 2003,
pp. 502–504.

[22] J. Crowcroft, “10 networking papers: recommended reading,” ACM
SIGCOMM Computer Communication Review, Issue 2, Apr. 2006, pp.
31–32.

[23] [Online]. Available: http://www.defcon.org

Symbol (8 bits) Current state (16 bits)Symbol (8 bits) Current state (16 bits)

r1 r2 r3
Code word array

Base index array

10 42

bix
ix

bit

six tencode :

base :
maptable

0 28-128-210 28-128-21

Fig. 7. Next state lookup using Lulea algorithm.

TABLE I. EFFICIENCY OF DIFFERENT ALGORITHMS

 Em (MB) Et (Mbps) Efficiency E
AC-DFA 56 288 5.14

AC-NFA 56.2 104.1 1.85

AC-Bitmap 1.4 5.2 3.71

AC-Lulea (LPM) 1.4 17.2 12.29

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

15

