
 
 

  
Abstract—This article presents a novel mechanism to perform  

packet content inspection by longest prefix matching (LPM) 
technology. It is done by transforming the automaton-based state 
table lookup problem into the famous LPM table lookup problem. 
Two key features, symbol-wise prefix and magic state are observed 
on the state table to make it possible to utilize IP lookup techniques 
for string matching. The proposed mechanism is verified to be 
effective through Lulea algorithm. Also, the practicability is 
evaluated by employing realistic attack signatures and traffic 
traces. The experimental results indicate that a state table 
constructed from the Snort 2.4 patterns can be converted into a 
prefix table that requires only 2.5% of the memory utilized in the 
original state table. Compared with the state-of-the-art researches, 
the proposed scheme has more than 3 times of efficiency, achieving 
a better balance between required memory size and throughput 
rate.  
 
Index Terms—Packet Content Inspection, Longest prefix 
matching, String matching. 

I. INTRODUCTION 
Deep packet content inspection is one of the most significant 

challenges and important issues to provide security service in 
high speed network environment. To achieve high-speed packet 
content inspection, many string matching algorithms have been 
proposed. For example, the Boyer-Moore algorithm has the best 
search performance among current well-known single pattern 
matching algorithms [1]. When it comes to multiple-pattern 
matching, Aho-Corasick (AC) algorithm and Wu-Manber 
(WM) algorithm, which were introduced in 1975 and 1992, 
respectively, are the two most well-known algorithms [2][3]. 
AC is an automaton-based algorithm and WM exploits the 
feature of bad character heuristic. 

In network appliances like switches, the most common 
application of string matching is the layer-2 address resolution. 
Since the pattern lengths in the layer-2 address lookup are the 
same (48/64 bits), binary searching, hashing, and CAM/TCAM 
are the common techniques to apply [4]. Although various 
researches focus on performing a single pattern search in 
parallel, they are not suitable for modern network environments 
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[5][6]. This is because the deep packet inspection requires 
multiple-pattern matching with variable length patterns. For 
instance, the rules in Snort are of variable lengths [7]. 

For the demand of performing layer-7 packet content 
inspection on network appliances, various studies have been 
proposed and implemented—search filter [8][9], reconfigurable 
silicon hardware [10], and TCAM-based method [11]. In this 
paper, a novel scheme, “String Matching as Longest Prefix 
Matching” (SM as LPM), is presented for applying the existing 
layer-3 LPM techniques of IP address lookup to the layer-7 
packet content inspection. This paper also explores a new 
development aspect to LPM, which is regarded as a mature 
research field today. The LPM algorithm is used  to find the 
longest prefix-matched entry in router’s forwarding table. Since 
the speed of IP lookup is crucial to routers’ performance, 
numerous LPM algorithms have been proposed [12]-[14]. In 
this paper, we show that the layer-3 IP lookup techniques can be 
applied to the layer-7 content inspection by employing the 
analogy between IP lookup and automaton-based 
string-matching algorithms. 

The rest of this paper is organized as follows. In section II, we 
present earlier researches on automaton-based string-matching 
algorithms and related studies. In section III, the basic concepts 
of symbol-wise prefix and magic state are introduced. Also, the 
well-known LPM algorithm, Lulea, is applied here as an 
example to verify the correctness of the proposed scheme. In 
section IV, the effectiveness of the proposed mechanism is 
analyzed and evaluated. Finally, some conclusions and future 
work are given in section V. 

II. RELATED WORK 
Before introducing the idea of transforming the string 

matching problem to the LPM problem, let us first review an 
important model in computer science: finite state automaton, 
FSA (i.e., finite state machine, FSM). FSA is composed of a 
finite number of states. Each state can transit to zero or more 
states depending on the input information. Finite state 
automaton can be classified into two categories: deterministic 
(DFA) and nondeterministic (NFA). Generally, DFA has better 
performance than NFA but it requires more states (memory 
space). It is worth mentioning that the Donnelly-proposed “IP 
Route Lookups as String Matching” uses finite state automata to 
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solve the problem of LPM [15]. 

A. Automaton-based Algorithm 
Although the WM algorithm is superior to all other multiple- 

pattern matching algorithms in the average case, it only shifts 
one byte at a time in the worst case. Malicious elements (like 
hackers) can exploit this feature to attack systems. A research 
[16] employing a synthetic input string shows that the 
performance of such algorithms are considerably suffered from 
algorithm attacks, which can be even declined to that of single 
pattern string matching. Therefore, general network appliances, 
especially those related to network security, usually avoid 
adopting WM algorithm since the device may become a victim 
of denial of service attack.  

In order to avoid these problems, the well-known AC 
algorithm becomes a popular choice. It constructs an FSA based 
on the given keyword patterns and performs string matching by 
state transition. In the worst case, it still has a deterministic 
processing rate. In AC-based automata, each state requires 256 
next state pointers, a pattern pointer, and a corresponding 
pattern ID (PID). Besides, the NFA structure needs to maintain 
another failure pointer to record the failure path. To reduce the 
huge amount of memory space requirement, Norton [17] used 
special compression methods to decrease the memory space 
when implementing Snort rules on AC; this is the most popular 
AC implementation nowadays. However, it also lowers the 
search performance. Besides, Nishimura proposed a speed-up 
method for the AC algorithm by rearranging the states [18]. 

N. Tuck, et al modified the NFA-based AC algorithm and 
used bitmaps that correspond to symbols to record the state 
transition of the non-failure path [16]. In this way, every node in 
the finite automaton only uses a pointer pointing to the next 
state list instead of allocating all the pointers to the next state. 

Recently, J.V.Lunteren, et al [19] presented a BFSM-based 
pattern-matching (BFPM) scheme based on a BaRT routing 
table search algorithm. BFSM is based on state transition rules 
that include conditions for the current state and input symbols, 
which are assigned priorities. However, this scheme is not 
suitable for software implementation due to its multiple FSM 
data structure. 

III. STRING MATCHING AS LONGEST PREFIX MATCHING  
The proposed model for performing string matching by 

longest prefix matching consists of two stages. The first stage 
performs state transition by LPM-based table lookup. The 
second stage searches the pattern ID if the output of the first 
stage is an accepting state.  

Fig. 1 explains the execution of the first stage, state table 
lookup stage. Since the next state is generated from the current 
state ψ and the input symbol tr, Index = {tr:ψ}. Because all 
symbols used in this paper are ASCII codes, the bit size u of a 
symbol is 8. The bit size v of a state is decided by the number of 
whole characters of all patterns and is generally equals to 16 or 
32. For example, the total amount of states constructed from 
Snort 2.4 patterns is 21595 and hence the bit size v of a state is 

16. The bit size w of the index is then given by w = u + v = 8 + 16 
= 24 bits. The index is generated by a conjunction of the input 
symbol that enters the FSM and the current state. It is used to 
lookup the corresponding next state in state table. The major job 
of the second stage, pattern search, is to determine whether the 
output state of state table lookup is an accepting state or not. If it 
is, then find the matched pattern ID.  

We focus on state table lookup here, as it is the key operation 
to the automaton-based algorithm. In fact, the fundamentality of 
all kinds of FSA operations is based on state transitions. The 
state table in table lookup stage can be represented as a state 
transition matrix depicted in Fig. 2. The variables u and v 
represent the bit sizes of the symbol and state, respectively. The 
element e(x,y) represents the appropriate next state when the 
current state y receives the input symbol x, and all the state 
transitions in the FSM can be recorded in the matrix. In the 
remaining sections of this paper, the FSA will be represented in 
the form of matrix M. This study concentrates on problems 
involving M for the DFA. We observed two interesting key 
features: symbol-wise prefix and magic state, which are 
described as follows. 

A. Symbol-wise Prefix 
Among the IP lookup algorithms, an algorithm named 

DIR-24-8-BASIC was proposed by P. Gupta [13]. In simple 
words, the algorithm segments the 32-bit IP address a.b.c.d into 
two parts: the 24-bit part (a.b.c) and the 8-bit part (d). By a 
straightforward method, the first 24 bits of the IP address is 
employed to function as the index for 224 entries. The entry 
content of a prefix whose length equals to or less than 24 bits is 
the next hop, and for prefixes with length greater than 24 bits, 
the next hop will be found in the level-2 table whose index 
comprises the last 8 bits of the IP address. The concept of this IP 
lookup algorithm can be adopted straightforwardly to use 24 
bits as the index in our proposal. This makes both the proposed 
algorithm and that in [13] have almost the same table structure 
and operations. The original 224 elements in the automaton 
matrix can be rearranged as shown in Fig. 3. 

Conventionally, the next state is decided by the current state 
and the input symbol in the FSM. In the scheme shown in Fig. 1, 
we straightforwardly assume the combination of the current 
state and input symbol to be the index and determine the next 
state using direct-lookup mechanism. The next state and Index 
are seen as the next hop and IP address (most significant 24-bit 
portion) in the LPM, respectively. 

Now, let us have some critical definitions: Let Index(x,y) = 
{w23, w22,…, w16, w15,…, w1, w0}, where w23 represents the 24th 
bit, which is the most significant bit (MSB), and w0 represents 
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…
…

…
…

…
…
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………

0111010100011010000000000000000000000000

Next StateIndex
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…
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…
…

…
…
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………
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u bits v bits v bits
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Fig. 1. Illustration of state table lookup. 
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the first bit which is the least significant bit (LSB). The Index(x,y) 
is generated by the combination of input string symbol x (8 bits) 
and current state y (16 bits). There are two ways to design the 
data structure of the state table: state-wise prefix or symbol-wise 
prefix. For the state-wise design, the current state and input 
symbol are placed in the MSB-side and LSB-side, respectively, 
and we have Index(x,y) = {v15,…, v1, v0, u7, u6,…, u0}. This design 
is suitable for the case when M is an NFA. 

Nevertheless, it is interesting to see that when M is a DFA, for 
each symbol x, most of e(x, y) have the same value (next state) for 
different current state y. For example, Fig. 4 shows the partial 
DFA table for Snort 2.4 constructed by the AC algorithm. We 
can see that most of the next states for input symbols 0x47,  and 
0x4C are 269, and 527, respectively. This generates the idea of 
symbol-wise prefix where the input symbol and current state are 
placed on the MSB-side and LSB-side, respectively, so that 
Index(x,y) = { u7, u6,…, u0, v15,…, v1, v0}. 

Based on this symbol-wise prefix data structure, it is 
observed that for the next state array with 224 entries, many 
continuous entries have the same next state number. In other 
words, it is very common to observe the relation e(x,y–α)=…=e(x,y) 
= e(x,y+β), where 0 ≤ α, β ≤ 2v-1. This provides the opportunity to 
aggregate many consecutive entries into one entry with shorter 
prefix length. For the sake of simplicity, consider the example 
of u = 2, v = 3, and for an input symbol x, e(x, y–1) = e(x, y). In this 
case, the state table is original of 32 entries (2u+v= 25=32). 
Assume that x = 3(11), y = 5(101). Then we have e(11, 100) = e(11, 

101). In other words, the 28th (11100) entry and 29th (11101) entry 
of the state table can be merged into one entry with prefix 
1110*. The star symbol “*” represents “don’t care” similar to its 
meaning in routing prefixes. Consequently, the prefix lengths of 
Index(11, 100) and Index(11, 101) are reduced from 5 bits to 4 bits. 
Based on this concept, if there are four consecutive entries of 
state table with the same entry value (the same next state), then 
these four entries can be merged into one entry with prefix 
“…**”, and so on. This symbol-wise prefix is the primary key 
that enables the state table lookup to be processed by using the 
LPM lookup algorithm. 

Fortunately, as we have figured out in Fig. 4, for each input 
symbol, most of its next states are with the same value, and this 
provides a good chance to merge most of the entries of state 
table so that the total number of entries can be dramatically 
reduced. For example, when u = 8 and v = 16, for the matrix M 
constructed by the Snort 2.4 patterns, the number of entries is 
dramatically reduced to 590,453 from 16-million (28+16) entries 
when the symbol-wise prefix approach is employed, requiring 
only 3.5% of the original number of entries. Fig. 5 shows the 
distribution of the symbol-wise prefix, and the shortest prefix 
length can be only 10 bits. 

B. Magic State 
In the previous subsection, we proposed the symbol-wise 

prefix that establishes a correspondence between the DFA state 
table and routing table. This successfully solves the DFA 
suitable problem mentioned in [16]. As we have pointed out 
before, the DFA constructed by the AC algorithm provides an 
interesting feature that for each input symbol x, most of the 
current states have the same next state value. We define this 
next state as the “magic state” of x (denoted as ms(x)). Consider 
the case shown in Fig. 4, the magic states for symbols 0x47 to 
0x4C are 269, 139, 151, 803, 1061, and 527, respectively.   

The magic state feature can be further applied to the 
symbol-wise prefix to reduce the prefix length. The 
construction procedure for the symbol-wise prefix can now be 
slightly modified as: In matrix M, if e(x,y) = ms(x), the 
corresponding Index(x,y) will be transformed to Index'(x,y) = { 
w'23, w'22,…, w'16, w'15,…, w'1, w'0}= {w23, w22,…, w16, *, *,…, *, 
*}. Thus, if e(x, y) is a magic state, the values from w'15 to w'0 of 
the corresponding Index'(x,y) will be “don’t care”. More precisely, 
all the entries with the next state equals to the magic state ms(x) 
can be merged into one symbol-wise prefix with a length of 8. 
To prove the effectiveness of the magic state concept, an 
experiment with the signatures of Snort 2.4 is conducted. Fig. 6 
shows the correctness of our proposition. There are 256 
symbol-wise prefixes (corresponding to the  magic states for 
each symbol) that are 8-bit long, and the total number of prefix 
entries decreases to 273,212. In other words, with the magic 
state, the number of symbol-wise prefixes is decreased by 
approximately 50% and the total number of the lookup table 
entries is dramatically reduced to only 1.5% (273k/16-million).  

Besides the fact that the magic state can decrease the number 
of symbol-wise prefixes, it has a much more important meaning 
for performing string matching by longest prefix matching. 
Compare the prefix distributions shown in Fig. 5 and Fig. 6, we 
can find that the magic state feature not only decreases the 
number of prefixes considerably but also concentrates the prefix 
distributions. In other words, after the magic state feature is 
applied, the distribution of the symbol-wise prefix will appear 
only in five lengths: 8, 21, 22, 23, and 24. A distribution like this 
will make the non-trie LPM algorithms, like hash-based and 
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Fig. 2. Automaton Matrix. 

24 bits
Index
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Exactly Matching

224 entries  
Fig. 3. Direct-lookup mechanism. 

Input Symbol(ASCII)  
0x47 0x48 0x49 0x4A 0x4B 0x4C

16 269 1037 1016 803 984 527 
17 269 139 151 803 1061 527 
18 12551 14000 12435 19727 1061 13877 
19 3063 12373 4190 803 1061 14843 
20 269 139 151 803 1061 527 
21 269 139 19 803 2558 527 
22 269 3464 151 803 1061 527 
23 269 4145 4190 803 1061 257 
24 269 139 15288 803 1061 527 

C
ur

re
nt

 S
ta

te
 

25 269 139 151 803 1061 527 
Fig. 4. Partial DFA table of Snort 2.4.  
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TCAM-based algorithms, have excellent performance [20]. For 
example, consider the approach proposed by Lim [21]; it 
divides a prefix into groups based on the prefix length and sends 
each group of prefixes to the corresponding engine. Since the 
prefixes are grouped based on a maximum of five lengths, we 
need only five engines to process the lookup operation. 

C. Demonstrations 
From the experiments in Fig. 5 and Fig. 6, we can see that the 

symbol-wise prefix is similar to the IP routing prefix and can 
effectively decrease the index requirement. We have 
straightforwardly used direct-lookup mechanism for string 
matching, and next, we would like to further prove that dealing 
with the symbol-wise prefix is the same as dealing with the IP 
prefix through applying a routing lookup algorithm.  

M. Degermark presented a data structure for forwarding table 
named Lulea algorithm designed for fast routing lookups [12]. 
By an ingenious design, it enables the IP routing table to be 
compressed for storing in the cache (500~600 KB for 40,000 
entries) of a processor through three elegant structures: code 
word array, base index array, and maptable. The algorithm got 
conceit and spawned an industry of follow-up articles [22]. 
Therefore, it is employed as the longest prefix matching 
algorithm without changing its algorithm and data structure. 

In Lulea [12], the routing prefix is segmented into three 
levels—one 16-bit level and two 8-bit levels. The data structure 
is mainly placed in level-1. Reviewing the discussion on the 
symbol-wise prefix, concerning Snort 2.4, there were 256 
symbols and no more than 65,536 total states and the longest 
prefix was 24-bit long. If we segment the symbol-wise prefix 
into two levels of 8 bits and 16 bits, we can find its 
advantageous like the case employing Huang’s NHA [14]. This 
means that the second level of the symbol-wise prefix is exactly 
suitable for the design of Lulea’s level-1. Therefore, we have to 
maintain 256 pairs of code word and base index arrays but just 
one maptable data structure.  

When processing the next state lookup, we use the first 8 bits 
(w23~w16) of Index to decide which code word array and base 
index array are needed for the lookup. We then execute level-1 
of the Lulea algorithm with the last 16 bits (w15~w0) to obtain 
the next state value. Considering Fig. 7 as an illustration, the 
first 8 bits representing the symbol that decides which code 
word array and base index array are used; these arrays are 
represented by hollow arrows in the figure. Next, we perform a 
lookup by employing the Lulea algorithm; this is represented in 
the dotted box on the right-hand side in the figure. By using the 
symbol-wise prefix, the string-matching problem can be 
successfully handled by the LPM algorithm. 

IV. EVALUATION AND ANALYSIS 
To evaluate the effectiveness of the proposed analogical 

relationship as well as the transformation procedure between 
string matching and LPM, the Snort 2.4 is taken as the patterns 
and the Defcon9 traces [23] are used as the input strings.  

Table I is the evaluation result for four implementations from 
the viewpoint of memory size Em (MB), software throughput 
rate Et (Mbps), and overall efficiency E. The efficiency value is 
defined as E = Et/Em, which represents throughput rate 
generated by each unit of memory. AC-DFA and AC-NFA 
represent the DFA and NFA in the traditional AC algorithm, 
respectively. AC-Bitmap is the algorithm for the NFA with 
bitmap that was proposed in [16]; while AC-Lulea refers to the 
implementation of the LPM algorithm [12] previous introduced. 
In Snort 2.4, the number of signatures (keyword patterns) is 
around 2390 with a total of 35K characters. Through Norton’s 
AC implementation, the content is transferred to a DFA of 
21,595 states and among them, 8,477 states are accepting states.  
The required memory space is approximately 56 MB according 
to the studies that have analyzed the AC algorithm [16][17]. In 
addition, by a comparison with several results of traces in 
various networks, we can find that the number of state 
transitions in a DFA is 30% less than that in an NFA. 

When Lulea algorithm is applied, the symbol-wise prefix is 
taken into consideration. Since the original 21595 × 256 indexes 
are reduced to 590,453 symbol-wise prefixes (also shown in Fig. 
5), the required memory space is decreased considerably. The 
memory space for Lulea algorithm is reduced to less than 1.4 
MB. Lulea algorithm is also implemented on a Windows XP 
platform to verify the correctness of the proposed mechanism. 
The software throughput for this implementation is also shown 
in TABLE I. Although the throughput for Lulea algorithm is not 
as good as traditional AC implementations because the 
proposed model involves the processing of the data structure 
(like popcount), the performance is still three times better than  
that of the compressed NFA with bitmap in [16]. Comparatively 
speaking, the AC-Lulea algorithm is much better than the 
AC-Bitmap algorithm. 

Based on TABLE I, we observed that there is a trade-off 
between the memory size requirement and the throughput rate. 
To make the comparison more practical and realistic, we take 
both throughput and memory usage into consideration, that is, 
overall efficiency (E). The higher E value represents better 
balance between performance and memory usage. Among all 
implementations listed in TABLE I, AC-Lulea has the best 
efficiency, about 7 times of that of AC-NFA, 3 times of that of 
AC-Bitmap, and more than 2 times of that of AC-DFA. The 
statistics indicate that through consumption of each memory 
unit, AC-Lulea could achieve the highest throughput rate. Since 
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Fig. 6. Length distribution of symbol-wise prefix with 256 magic states. 
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the proposed implementation requires only a tiny amount of 
memory, it provides high flexibility in various environments, 
especially in resource-limited network appliances. 

V. CONCLUSIONS 

A novel mechanism to perform string matching by longest 
prefix matching (LPM) has been proposed in this paper. We 
focus on converting the state table lookup problem in 
automaton-based string matching algorithms to the famous IP 
routing table lookup problems. Two characteristics, 
symbol-wise prefix and magic state are observed to make it 
possible to utilize IP LPM lookup techniques for string 
matching. By applying the two key features, a state table 
established from the Snort 2.4 patterns is successfully 
transferred into a prefix table that requires only 2.5% of the 
memory utilized in the original state table. Compared with past 
NFA-based string matching researches, the proposed scheme 
achieves more than 3 times of efficiency. 

By demonstrating that the string matching can be performed 
by LPM, it opens a window for designing cost-effective security 
switches/routers based on the commodity L3 switches or routers. 
As many modern L3 switches or routers employed the LPM 
algorithms for IP address lookup, we now have the opportunity 
to upgrade these devices to layer-7 with deep content inspection 
capability based on their original hardware platforms.  
Particularly, for speed consideration, it is even better if TCAM 
is designed in the hardware platform as several efficient 
TCAM-based LPM algorithms can be applied.  
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Fig. 7. Next state lookup using Lulea algorithm.

TABLE I.  EFFICIENCY OF DIFFERENT ALGORITHMS 

 Em (MB) Et (Mbps)  Efficiency E 
AC-DFA 56 288 5.14 

AC-NFA 56.2 104.1 1.85 

AC-Bitmap 1.4 5.2 3.71 

AC-Lulea (LPM) 1.4 17.2 12.29 
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